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Timing of the formation and migration of giant planets
as constrained by CB chondrites
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The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the tim-
ing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating
planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities
lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and sili-
cates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that
were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region
where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant
planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula
persisted until ~5 My.
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INTRODUCTION
The CB metal-rich carbonaceous chondrites predominantly consist of
submillimeter- to centimeter-sized Fe,Ni metal ± sulfide nodules and
nonporphyritic (cryptocrystalline and skeletal olivine) silicate chon-
drules, which crystallized from complete melts, and irregularly shaped
chemically zoned Fe,Ni metal grains with compositions consistent
with gas-solid condensation (1–3). CB chondrites are divided into
two subgroups: coarser-grained CBa and fine-grained CBb. Zoned
Fe,Ni metal grains and cryptocrystalline chondrules occur almost ex-
clusively in the CBb chondrites. CB chondrites are the youngest among
known chondrite groups (1) and are thought to have formed in an
impact-generated gas-melt plume ~4.8 ± 0.3 My after the formation
of Ca,Al-rich inclusions, the earliest solar system solids dated (4, 5).
Detailed equilibrium condensation calculations (6) and bulk chemical
and isotopic studies of CB chondrites (7, 8) suggest that at least one of
the colliding bodies was differentiated (7), that is, had a Fe,Ni metal
core and a silicate mantle, and that either collision occurred in the outer
solar system (that is, beyond Jupiter) (8) or that one of the bodies was
sourced from the outer solar system.

The vaporization of a Fe,Ni metal core and a silicate mantle from a
differentiated body that was involved in the collision requires a high-
velocity impact. During the impact, the passage of a shock wave com-
presses and heats the impactor and the target material. The amount of
heating depends on the impact velocity and the materials that are
involved. Laboratory experiments of the shock vaporization of iron
coupled with detailed impact models indicate that the incipient vapor-
ization of an impactor core material requires impact velocities
exceeding 18 ± 5 km/s and that this threshold is relatively independent
of preimpact temperature (9). The large uncertainty in this estimate
includes normal experimental uncertainty and the effect of variations
in impact angle.

Vaporization of a Fe,Ni metal core and a silicate mantle occurs if
they are compressed and heated enough to form a supercritical fluid.
This supercritical fluid eventually decompresses, forming a liquid-vapor
mixture (9, 10). As this mixture cools, the vapor will condense onto
existing drops of molten metal and silicates. If the liquid drops decouple
from the vapor or the liquid-vapor mixture is dominated by vapor, the
vapor can produce metal and silicate condensates through the process of
homogeneous nucleation (11). Either explanation for the observed chem-
ical zoning in Fe,Ni metal grains in CBb chondrites requires that a large
fraction of material be in the vapor phase upon decomposition into a
liquid-vapor mixture. Thus, chemical zoning in Fe,Ni metal grains in
CBb chondrites likely requires a significant fraction of metal to vaporize
upon release, necessitating impact velocities well above 18 ± 5 km/s (9).
RESULTS AND DISCUSSION
Accretion and giant planet migration
To model planet formation and estimate the velocities of collisions oc-
curring during planetary accretion, we use the recently developed
Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD)
(12). Our simulations model a typical minimum mass solar nebula
(protoplanetary disk that contains the minimum amount of solids that
are necessary to build the planets of the solar system, ~0.01 mass of the
Sun) between 0.7 and 3.0 astronomical units (AU; 1 AU is the mean
distance from the center of Earth to the center of the Sun) with a gas
density that decays on a 2-My time scale (Supplementary Materials). In
our models, Jupiter is initially 15 Earth masses and located at 3.5 AU.
Gas-driven giant planet migration can fundamentally alter the struc-
ture and evolution of planetary systems (13, 14). To explore the effect
of giant planet migration, we produced a series of three simulations in
which Jupiter’s mass was increased to its current mass (~318 Earth
masses) instantaneously, at 2, 4, or 6 My, respectively, and subse-
quently forced to migrate, following the nominal model of the Grand
Tack (15). Jupiter’s 0.1-My inward migration stops when it reaches
1.5 AU, followed by an outward migration to 5.2 AU on a 0.5-My
time scale. The inward-then-outward migration of Jupiter, or Grand
Tack, can explain the relatively low mass of Mars and both the dynam-
ical and compositional structures of the main asteroid belt (15–17).

Gas in the solar nebula damps eccentricities and inclinations,
which keeps impact velocities relatively low. As bodies grow with time,
impact velocities increase because of the higher mutual escape veloci-
ties, increasing eccentricities and inclinations from dynamical stirring and
decreasing damping effects from the dissipating gas disk. Figure 1 shows
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how impact velocities on growing planetary embryos in the inner solar
system change with time. Even when tracking collisions by all impacting
bodies larger than 10 km in diameter (that is, not only onto planetary
embryos), the maximum impact velocity occurring in the canonical ac-
cretion model is 12.2 km/s around the time that CB chondrites formed
(Supplementary Materials). Thus, the CB chondrites are unlikely to
form as a consequence of normal planetary accretion. However, models
that include a Grand Tack exhibit a large spike in impact velocities
around the time of Jupiter’s inward migration lasting a few hundred
thousand years (Fig. 1, B to D). If the CB chondrites do contain outer
solar system material, then a more suitable environment would be a
dynamically mixed main asteroid belt that includes the taxonomic di-
versity that is currently observed.

Evolution of the excited main asteroid belt
Gas-driven giant planet migration can scatter inner and outer solar
system material into the main asteroid belt (15), consistent with the
suggestion that CB chondrites contain material from the outer solar
system (8). However, LIPAD models that include both the inner and
outer solar system are prohibitively expensive. Moreover, a multitude
of giant planet migration pathways could produce a main asteroid belt
that is excited to high inclination and eccentricity (18). Thus, we consider
a more universal scenario and model the evolution of a population of
bodies within the main asteroid belt region (1.8 to 3.6 AU), which
have been excited to high inclination and eccentricity by giant planet
migration (Supplementary Materials). Although these models nominal-
ly simulate the aftermath of a Grand Tack–like migration, any migra-
tion pathway, or any strong excitation mechanism (19), that yields a
main asteroid belt of similar mass and dynamical excitement would
produce comparable results (Supplementary Materials).

Several collisions capable of partially vaporizing metallic core mate-
rial occur during the first 0.5 My of the evolution of this excited main
asteroid belt (Fig. 2). The most extreme impact in this simulation, a
90-km-diameter body striking a 300-km-diameter body at 33 km/s, is
capable of 30 to 60% vaporization of core material (9). This impact
could easily produce the zoned Fe,Ni metal grains of CBb chondrites.
The relatively small number of impacts capable of vaporizing a signif-
icant fraction of core material may explain why there is no clear evi-
dence yet of other CB-like events in the meteorite record. However,
we note that two recently described metal-rich noncarbonaceous chon-
drites, NWA (Northwest Africa) 5492 and GRO (Grosvenor Mountains)
95551 (20), show some petrographic and mineralogical similarities to CBa
chondrites, including a high abundance of Fe,Ni metal and magnesian
nonporphyritic chondrules, and may have originated in a CB-like
impact plume. Unfortunately, the ages of chondrules in these meteor-
ites are not yet known. In addition, the ureilites (carbon-bearing ultra-
mafic achondrites) could be related to the heightened impact velocities
associated with giant planet migration. Before it reaccreted, the ureilite
parent body was disrupted by an energetic impact around the same
time the CB chondrites formed (21, 22). Nominally, for a similar size
distribution and dynamical excitement, the number of similar colli-
sions would scale linearly with the total mass of the belt, such that
a population twice as massive or half as massive may produce too
many or too few high-velocity collisions, respectively.
CONCLUSIONS
Where canonical accretion models with no migration fail (Fig. 1A),
models of a main asteroid belt excited by giant planet migration can
Johnson et al. Sci. Adv. 2016;2 : e1601658 9 December 2016
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Fig. 1. Impact velocities on growing planetary embryos in the inner solar system.
(A) Impact velocity from a canonical accretion simulation. (B to D) Impact velocities
for models in which Jupiter begins a 100,000-year inward migration to 1.5 AU at 2, 4,
and 6 My, respectively, before migrating out to its current position on a time scale of
500,000 years. The gray line marks an impact velocity of 18 km/s with the box en-
compassing the full range of the uncertainty for incipient vaporization of iron in plan-
etesimal cores, including the effect of impact angle (18 ± 5 km/s). All impacts onto
bodies larger than 1400 km in diameter are plotted.
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generate the high-impact velocities required to produce the CB chon-
drites (Fig. 2). Because the increased impact velocities only persist for
~0.5 My following the onset of migration, the age of the CB chondrites
effectively constrains the timing of giant planet migration. This finding
has important implications for the timing of giant planet formation and
the lifetime of the solar nebula.

The giant planets of our solar system are thought to form through
the process of core accretion, which requires the initial development of
a roughly 10–Earth mass planetary core, followed by the runaway ac-
cretion of gas (23, 24). The time that it takes to produce a planetary
core is weakly constrained and model-dependent (24, 25). Once a
planetary core forms, it takes ~103 to 105 years for the growing gas
giant to accrete a Jupiter mass of gas, depending on the location where
the core forms and the density of the protoplanetary disk (26–28).
According to hydrodynamic simulations of our solar system, the
migration of the giant planets takes ~105 to 106 years and nominal-
ly stops once the solar nebula is depleted (28, 29). This means that
after planetary cores are formed, the solar nebula will be depleted
Johnson et al. Sci. Adv. 2016;2 : e1601658 9 December 2016
within 105 to 106 years. Thus, the formation of the CB chondrites at
4.8 ± 0.3 My after the first solar system solids (5) indicates that
planetary cores took ~4.5 to 5 My to form and that the gaseous
solar nebula existed at least until this time and dispersed shortly
thereafter.

Astronomical surveys of young star clusters indicate that the typ-
ical lifetime of a protoplanetary disk is ~3 to 10 My (30) and that giant
planet formation ceases around 5 My for solar mass stars (31). The
lifetime that we estimate for the solar nebula is consistent with astro-
nomical surveys of young star clusters. However, our estimate for the
time scale of planetary core formation suggests that the process was
comparatively slow in the solar system but seems to be in good agree-
ment with pebble accretion models (25). This time scale is also
consistent with models that show that giant planet migration occurred
after the relatively quick accretion of Mars (32, 33). Accretion of ejecta
from the CB forming impact requires that sufficient gas was present in
the solar nebula (Supplementary Materials). Thus, the region where
the CB chondrites formed was dynamically excited during the epoch
of the gaseous solar nebula. This extreme dynamical excitement is not
an expected result of the classical accretion of bodies and demands the
interference of the giant planets.
MATERIALS AND METHODS
In most previous simulations, collisions between interacting bodies re-
sulted in simple growth by the merging of bodies, such that one could
model planets growing from a sea of smaller planetesimals and plan-
etary embryos. Here, with LIPAD, we used “tracer” particles that each
contained a significant total mass for gravitational calculations but
represented a swarm of particles of a smaller radius, s. For small sizes,
the tracers represented a huge number of small bodies and required
collisional probabilities to be calculated for each tracer as a function of
the size s that it represented and the same for its neighbors—all while
continuing gravity calculations.

When collisions occur, LIPAD relies on a fragmentation law based
on the works by Benz and Asphaug (34) and Durda et al. (35) to de-
termine the outcome of collisions between particles. Thus, the total
system’s size distribution is built from the total number of particles
with different sizes s. Meanwhile, the population of tracers can affect
the local dynamics through dynamical friction and viscous stirring
effects while also experiencing the local gas effects from the solar neb-
ula. Fundamentally, the Lagrangian nature of the code allows for the
dynamics to be preserved, whereas the collisional effects can model
growth from dust all the way to planets. LIPAD can track the collisions
that happen in our modeled disk, either by the individual embryos or
the statistical tracking of tracer particles. Although computationally
expensive, LIPAD can effectively track every collision occurring in
the simulation down to arbitrarily low impact velocities and small im-
pactor sizes. We refer the reader to the work by Levison et al. (12) for
consideration of a suite of tests to demonstrate LIPAD’s capabilities in
matching an array of previous works.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/12/e1601658/DC1
Supplementary Materials and Methods
fig. S1. Model setup for an excited post-migration main belt.
fig. S2. Impact velocities in an excited post-migration main belt disk with no gas present.
References (36–38)
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Fig. 2. Impact velocities in a dynamically excited main asteroid belt disk. Im-
pactor (A) and target (B) diameters are indicated by the color bar and marker size.
The gray line marks an impact velocity of 18 km/s with the box encompassing the full
range of the uncertainty for incipient vaporization of iron in planetesimal cores, in-
cluding the effect of impact angle (18 ± 5 km/s). All impacts by bodies larger than
10 km in diameter are plotted.
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